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TESTS FOR EXPONENTIALITY WHEN ORIGIN AND SCALE
PARAMETERS ARE UNKNOWN
By
John Spinelli and

Michael A. Stephens

1. INTRODUCTION
A test of exponentiality is a test of Ho; a given random sample |

of n values of x comes from the exponential distribution
(1) F(x) = 1 - exp(-(x-A)/B), x>A,

where B 1is a positive constant. This distribution will be referred
to as exp(A,B), and A 1is the origin of the distribution. Through-
out the paper we shall suppose the sample has been labelled in ascending
order, so that A < x, < Xy < vee < x -

Many tests of the above null hypothesis Ho have been proposed
in the literature; in the great majority of these tests, B 1is unknown,
and A 1is known. Then without loss of generality A can be assumed

zero; if A 1is not zero the substitution Y =% - A produces a

i
sample of ordered y-values from exp(0,B) when Ho is true. The
parameter B 1is either estimated directly from the sample or is
eliminated by exploiting connections between the exponential and the
uniform distributions.

In this paper we discuss tests when both A and B are unknown.

These tests have so far not been considered extensively, and a possible

reason for this 1s because a simple device exists to change a test of
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Ho with A wunknown into a test with A = (0. This is to make the

substitution vy - X441 %

that this substitution produces, on HQ, an ordered random sample of

-X,, 1=1,...,n-1; it is a well known result
n-1 values of v from exp(0,B). Thus the test of Ho can be reduced
to a test that the v, come from exp(0,B), B unknown, using any of
the many tests of this hypothesis that have been proposed. This method
of dealing with the unknown A we shall call Method 1. Although
Method 1 eliminates A, it may not necessarily give the most powerful
test of Ho, and we therefore investigate two main alternative
approaches, in which A 1is estimated directly rather than eliminated.
The first of these alternatives, which we shall call Method 2, is to
estimate A and B, and then to use tests based on the empirical distri-
bution function (EDF). A second alternative, called Method 3, is to
use a test based on a regression of the order statistics XyseeesX
on suitable constants along the horizontal axis. For example, the
order statistics may be regressed against m, where m, is the
expected value of the i-th order statistic from exp(0,1). On Ho,

we have

(2) E(xi) = A+ Dmi

where E denotes expectation, and suitable test statistics are measures
of how well the order statistics fit the line (2). One such statistic,

for example, is the Shapiro-Wilk (1972) statistic WE’ and other

statistics recently proposed in the literature are measures of the

or between x, and statistics

correlation between x, and m i

i i’
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similar to m,. Statistics based on these methods will be called
regression statistics. In the next section the procedure is given
for calculating EDF statistics; in section 3 regression statistics

are described, and in section 4 we compare the methods.
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2. EDF STATISTICS.
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EDF statistics are statistics based on the discrepancy between
the distribution (i) above, with estimates used for A and B, and
the empirical distribution function of the sample of x-values. Many
statistics have been proposed to measure this discrepancy, and we

here concentrate on those which are usually called D+, D, DV,

Wz, 02 and Az. The formal procedure for calculating these statis-
tics is as follows:

(a) Calculate the following estimates of A and B:

In.

~ A _ n
B = n(x=x,)/(n-1) and A = x, ~-B/n, where x = z x
1 1 {=1

i
(b) Calculate

ui-(xi-A)IB and zi-l-exp(-wi), for i=1,...,n.

(c) The test statistics are then given by the following formulas:
mls_i_g_n [(1/n) -zil
D = BEX) 1¢n [z, -~ (1~1)/n]

D = max(p*,D")

v ="+
n
21-1 1
W 121 (z,-"%’ *1am
2

n
v e wz-n(;-;') , where z = z ziln
i=1

) -n.

n
1
A 121 (24-1)(1n 2, +1n(l-2 ., .
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The estimates 2 and ; given above are derived from generalized
least squares; they can be obtained also from the maximum likelihood
estimates, modified to make them unbiased. The distributions of the
test statistics, on Ho, will depend on n but not on the true values
of A and B. These distributions are, for finite n, difficult to

find, but asymptotic theory is available for the statistics w2, U2

and Az. The asymptotic distributions are the same as those tabulated
under the heading Case 4 by Stephens (1974, 1976); Case 4 refers to

the situation in which A 1s zero and only B 1is estimated by maximum
likelihood. The introduction of the new estimate K, in addition to

3, does not effect the asymptotic distribution, because R has
variance of the order 1/n2, and so is super-efficient in the nota-
tion of Darling (1955). However, for finite n there will be some
difference in the null distributions, and these have been found by
Monte Carlo methods. A list of upper tail percentage points is given
in Tables 1 and 2. The slight difference in values of the asymptotic

distributions for wz, U2

and A? represents an improvement in the
calculations of these points since the appearance of Stephens (1974),
although use of the earlier points makes only a very small difference
in a-values. w2 has also been examined by Van Soest (1969), who
gave asymptotic theory and Monte Carlo points for n = 10 and 20. For
#hD+, /nD , and vnD the asymptotic points have been found by extra-
polating exact points given by Durbin (1975) for Case 4.

The test of fit therefore consists of calculating the appropriate

statistic required, as described above, and referring either to Table 1

for direct percentage points, or calculating the modified form of the
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test statistic as given in Table 2 and referring to the asymptotic :

points only. The modifications are very useful when making a i
computer program for the tests. j
!

Example. We illustrate the procedure on the set of data, kindly j
provided by Dr. W.G. Warren, listed in Table 3. There are n = 32 i

observations, measurements of modulus of rupture of wood beams. From
the data we have x = 94.878; then ; = 53.356 and R = 41.523. The !
EDF statistics have values vaD' = 1.115, v/nD = 1.989, vnD = 1.989,
Jav = 3.104, W = 1.066, U2 = 0.780, A2 = 5.097. Reference to Tables
1 and 2 show all these statistics to be highly significant and we
reject the null hypothesis that the values are exponentially distri-
buted.

Comment. In other goodness-of-fit tests based on the EDF, simple
maximum likelihood estimators have usually been used, even when these
are biased. In this case the maximum likelihood estimator of R would
be Xy5 the first value of w, would then be 0, and the first

i

value of z, would be 0 also. This would produce an infinite

P{ value for the statistic Az, so that this statistic could not be
:% used. The change would of course also affect the Monte Carlo points
for finite n for the other statistics, although the asymptotic

SN I

el

distribution would remain unchanged. However, since A2 has frequen-

tly been found to be a powerful statistic in goodness-of-fit, the

unbiased estimate of A has been used and statistic A2 is then

available for test purposes.
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3. REGRESSION METHODS
Suppose u,, i{i=1,...,n 1is an ordered random sample from exp(0,1l)

as in (2) above. Test

and let m, = E(ui); then E(xi) = A+Bm

i i
statistics of fit can then be based on how closely the data x 1 fit
this model. A possible test statistic is the correlation coefficient
r(x,m) calculated from the pairs (xi,mi), i=1,...,n. Strictly
speaking this is not a correlation coefficient, since the m, are
constants and not random variableg, but it has become customary to

use this terminology since r(x,m) is calculated from the usual
formula for paired random variables, as follows.

= Zi(xi-;) (mi-;) and 5 = Zi(mi-;)z.

-2
Let S -Ei(_xi-x) , S

XX Xm

where X and m are the means of the x-values and the m-values
respectively. Then rz(x,m) = S;‘:m / (sxxsm)' An alternative method
of plotting is to put h:l. = -In{1-1/(n+l)} along the x-axis, instead
of m; h:l. is a good approximation to n, and is easier to calculate.
The corresponding correlation coefficient will be called r(x,h). For
both these statistics a high value (that is, approaching 1) will suggest
a good fit to the exponential model.

It is common in regression to set up an Analysis of Variance table

with SS denoting Sum of Squares:

Source of variation

2
Regression SS sml Sm

2
Error SS S xx—s xm, Sm

Total SS = S
xX

A S ol as g
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The Error SS may also be written i(xi-xi)z, where x, = :\+Bm1
and is clearly also a measure of how well the data fits the estimated
line (2); in fact Error SS/Total SS = Tm - 1-r2(x,m) can be used as
the test statistic, with high values of Tm leading to rejection of
Ho. The parallel statistic '1‘h = l-rz(x,h) could be used also; some
critical values for use with censored samples have been given by Smith
and Bain (1976, Table III). These were found by Monte Carlo sampling.
In Table 4 of this paper are given critical values for Tm’ and further
values for Th. These are based on Monte Carlo samples, using 10,000
samples for each n. For Table III of Smith and Bain (1976) the number
of Monte Carlo samples was 100,000/n, so that the values in Table 4
for n > 10 might be expected to be more accurate.

Example. For the example quoted in Section 2, we have rz(x,m) = 0.640
and rz(x,h) = 0.611; the corresponding values of Tm and '1'h are 0.360
and 0.389. Reference to Table 4 shows these statistics to be clearly
sig 'ficant at level 0.0l; thus the hypothesis that these data are
exponential is rejected.

An alternative method of measuring the goodness-of-fit was intro-
duced by Shapiro and Wilk (1972), and consists of comparing the generalized
least squares estimate of B given from the linear model (2) with the

estimate obtained from the sample variance. The resulting test statistic

Wg 1s given by

. n(x-x (L)
E 2
(n-1) sxx

Tables of percentage points for W

B* for n from 3 to 100, have
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Been given by Shapiro and Wilk (1972). The test is a two-tailed test.

The value of WE

Wilk (1972) shows this to be highly significant in the lower tail, so

is 0.1742, and reference to Table 1 of Shapiro and

again Ho will be rejected.

There is a weakness in connection with W It is possible to ]

ED
find other distributions for which the limit of {x: X=X (9 / as

n+>w, ig the same as that for the exponential, i.e. 1, and the i

test based on wE will not necessarily be consistent; this was noted

by Sarkadi (1975). A distribution with this property, for example, is

the Beta(a,b) distribution, with a <1 and b = a(a+l)/(1l-a); two

pairs (a,b) are (1/4,5/12) and (1/2,3/2). Monte Carlo Samples
of size n were taken from Beta(l/4,5/12) and the percentage of 1000

samples rejected by W_ in a test for exponentiality at the 10X level

E
were recorded. The results were, for n = 10, 15.8%; for n = 20, 9.4%;
for n = 50, 7.2%; and for n = 100, 2.2%. Corresponding percentages for
the statistic Az were 61.9%, 92.4%, 100.0% 100.0Z. For the same
sample sizes, and for samples from the Beta (1/2,3/2) distribution,
the percentages rejected were, for WE, 7.7, 5.8, 4.4, 1.5; and for

Az, 22.1, 38.2, 73.1, 96.4. The inconsistency of WE is thus apparent.

In contrast, Gerlach (1979) has shown that rz(x,m) (and hence Th)

always gives a consistent test and this would appear to be true for

rz(x,h) and T, also.

.
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4, POWER STUDIES

The efficiencies of the above methods of dealing with unknown A

have been examined by extensive Monte Carlo studies. Random spaces

of size n were taken from a broad range of distributions including
especially those distributions,such as the Weibull, gamma and lognormal
distributions, which are used in the literature as practical alternatives
to the exponential in models for reliability studies or renewal processes.
These were then tested for exponentiality using the several methods
described above, and tables prepared showing the percentage of samples
declared significant when the test was of size a. It was noted by

Stephens (1974) and again by Dyer (1974) that knowledge of the exact

values of parameters (in the context of testing for normality) does Qﬁ
not always help in deciding on the distributional form; the power of 2
the test against densities of different shape is greater when the '%
statistician estimates his own parameters. For this reason, tables

were prepared to compare the results for A unknown, with those

obtained when A was assumed known (Case 4 above). Powers for A
known are given first, in Table 5. They agree within sampling fluctua-
tions with previous values given in an unpublished technical report
by Stephens (1978). Table 6 shows the results for Method 1 (subtract-
ing the minimum and treating as Case 4), Table 7 gives results for EDF

statistics with A and B estimated and Table 8 compares the best

of the EDF statistics with the Shapiro-Wilk wE and with the correlation
statistics Th and Th’ respectively equivalent to rz(x,m) and
rz(x,h). Van Soest (1969) also gives some power studies against Gamma

1

alternatives, and our results agree where they overlap. !H
.o
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Comments. (a) There is, overall, a reduction of power for EDF

statistics when A must be estimated, in contrast to the situation
in testing for normality using these statistics (Stephens, 1974;
Dyer, 1974).

(b) Of the EDF statistics, Az is best on the whole, for both

methods 1 and 3, though w? s close behind. D' or D will

usually be more powerful than A2, but their limitation is that
one must know which of the two should be used.
(¢) In a comparison of methods 1 and 2, both of which use EDF

2 yith method 2 is overall slightly better than A>

statistics, A
with method 1. When there is a very high probability of small values
(e.g. for xi, or Weibull (0.5)), method 1 is better. These differ-
enceg extend to the other statistics also.

(d) From Table 8, where A2 and Wz

with method 2 are compared
with the regression statistics, it can be seen that the simple regres-
sion gtatistics Th and Th are poor in power, particularly for large
sample sizes. Th is mostly worse than Tm.

(e) Statistics WE, and Wz or Az, are competitive with each
other, with sometimes the former statistic and sometimes the latter

pair being more powerful. There are indications that for some alterna-

tives, e.g. Beta (1,4), the half-normal and the log-normal distributionms,

W, improves with large samples. But the serious drawback that VE is

E
inconsistent, and so will rarely detect certain distributions even with

large samples, will put Wg out of favour with many statisticians.
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(£) 1If ﬂ+, D, or Wy are to be used, some indication of

the nature of the alternative would have to be available. Of course,
o' and D can both be calculated, and this is a useful general pro-
cedure towards an analysis of the data; but if then the most signifi-
cant statistic is chosen for a test, there will be an unknown change

in the true significance level. In view of these reservations involving
the other statistics, our overall recommendation would therefore be

to uge method 2 with A2, as described in Section 2, for an overall

omnibus statistic for this problem.

This work was supported in part by the National Science and
Engineering Research Council of Canada, by the U.S. Office of

Naval Research, and by the U .K. Science Research Council; these

Agencies are thanked for their assistance.
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Upper tail percentage points for vap*, vnD~, vaD, vav, w2, o2,

and Az, for a test of exponentiality with location and scale para-

meters estimated as in Section 2.

a) Statistic VnD+

Upper tail significaance level a

.25 .15 .10 .05 .025 .01
5 491 . 569 .639 .743 .825 917
10 .580 674 . 745 . 551 .952 1.038
15 .610 . 700 .768 .872 978 1.077
20 624 .716 .785 894 .995 1.108
25 .635 . 725 .799 909  1.010 1.125
50 .660 .758 .832 943 1.051 1.163
100 .682 778 .853 967 1.074%  1.189

© .723 .820 .886 .996 1.094 1.211

b) Statistic VnD
5 .627  .705 .75 .821  .891  .955
10 .67t  .761  .825  .916  .993  1.089
15  .638  .7863  .842  .933 1.022 1.11l
20 .696  .791  .855  .949 1.041 1.132
25 .702  .795  .860  .958 1.052 1.149
50 .710 .807  .874  .976 1.072 1.178

100 .717 .814 .879 .984 1.089 1.192
© .723 .820 .886 .996 1.094 1.211

c) Statistic ¥nD

5 .683 . 749 .793 .865 .921 992
10 .753 .833 .889 977 1.048 1.119
15 .771 . 865 912 1.002 1.079 1.163
20 .786 .872 .927 1.021 1.099 1.198
25 .792 .878 .936 1.033 1.115 1.215
50 .813 .879 .960 1.061 1.149 1.257
100 .824 911 .972 1.072 1.171 1.278
© .840 .927 .995 1.094 1,184 1.298

15




TABLE
.25 15
d) Statistic VaV
5 1.098 1.186
10 1.194 1.294
15 1.225 1.325
20 1.245 1.346
25 1.260 1.366
50 1.292 1.400
100 1.310 1.419
" 1.33% 1.444
e) Statistic w2
K] .083 . 102
10 097 122
15 . 103 . 130
20 . 106 . 133
25 . 107 L9
50 L1 R
100 .113 . 144
o .116 . 148
£) statistic U
5 .068 .083
10 .075 .094
15 .080 .099
20 .082 .102
25 .083 . 104
50 .087 .108
100 .089 .110
o .090 .112
g) Statistic Az
5 .460 555
10 . 545 .660
15 .575 .720
20 .608 .757
25 625 . 784
50 .680 .838
100 . 710 .875

et iRl .f-_"r - T

1 Continued

.10 .05 .025 L0l
1.234 1.314  1.400 1.494
1.363 1.461 1.556 1.662
1.392 1.504  1.596 1.701
1.419 1.536 1.635 1.769
1,438 1,559 1.658 1.796
1.481 1.600 1.701 1.847
1.502 1.547 1.740 1.897
1.532 1.656 1.770  1.910

117 . 141 .166 . 197

. 142 176 L211 . 259

151 . 188 .229 .281

. 157 . 195 . 237 .293

. 160 .199 L2247 .301

. 166 . 209 . 256 .319

.170 .215 .263 .328

.175 .222 .271 .338

.093 .113 <131 .153

. 108 .131 .155 . 187

114 .139 . 165 . 200

117 . 143 .170 . 207

.119 . 146 .173 .212

. 124 .152 .180 .223

.126 . 155 .184 .229

.129 . 159 .189 .236

.621 .725 .848 .989

747 .920 1.068 1.352

.816 1.009 1.198 1.495

.861 1.062 1.267 1.580

.890 1.097 1.317 1.635

.965 1.197  1.440 1.775
1.008 1.250 1.510 1.855

1.321 1.591 1.959

..........

16




5 -d ) AP o0& o .

Modifications and percentage points for the modified statistics Hz, Uz, aud Az.

Statistic Modification
"2 "2(1 + 2.8/n _ 3/n2)
UZ uz(l + 2.3/n _ Jlnz)
A2 Az(l + S.A/n _ 11/nz)

Upper tail significance level a

.25 .15 .10 .05 .025 .01

.116 - .148 .175 .222 .271 .338
.090 .112 .129 -159 .189 .230

<736 916 1.062 1.321 1.591 1.959

N
[T RNy § PR




RETRC I AN S e I SN Yt M Wi gt T b DA Nk A il N S e e e i hon e Mo et s e ) DhaAUIs A lhe s Jiere g iie A g i i v e

TABLE 3

Thirty-two ordered values of modulus of rupture for Douglas Fir
and larch two-by-fours.

43.19 49 .44 51.55 55.37 56.63 67.27 78.47 86.59
90.63 92.45 94.24 94.15 94.38 98.21 98.39 99.74
100.22 103.48 105.54 105.54 107.13 108.14 108.64 108.94
109.62 110.81 112.75 113.64 116.39 119.46 120.33 131.57

Values and significance levels of the regression and EDF test

P statistics for exponentiality calculated on the above data.
i Statistic value significance level a
Vot 1,115 <.025
- Vb~ 1.989 <.01
o YnbD 1.989 <,01
Vav 3.104 <.91
. 1.066 <.01

0.780 <,01
5.097 <.01
0.640 <.01
0.611 <.01
0.174 <.01
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TABLE &

Percentage points for T. = l-rz(x.m) and for Th = 1-rz(x,h)

Statistic Tn

n

10
15
20
25
50
100

Statistic T

10
15
20
25
50
100

h

Upper tail c-level

.25 .15 .10 .05 .025 .01
.140 .178 .201 .261 .328 .392
.104 .133 .156 .192 232 .272
.087 .110 -129 .163 -194 <232
.076 .096 .113 <141 .169 .210
.065 .083 .097 .123 .152 .189
.044 .056 .067 .085 .108 <143
.028 .036 .043 .057 .074 .105
.000 .000 .000 .000 £00 .000
.136 .167 .192 .235 .285 .352
.102 .129 . 154 .199 .234 .285
.084 .110 132 .170 .207 .259
.073 .097 .116 .152 .191 241
.064 .084 .102 .135 175 .223
. 044 .060 .073 .101 .133 .176
.029 .040 .050 .069 .094 .129
.000 <000 .000 ~000 »000 .000
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TABLE 5
Power Comparisons: A known

The table shows the percentage of 2500 samples declared significant
by the statistic, when the test used was a 104 test.

Alternative Sample

distr. size pt n D v W v? It
Beta (1,4) 10 3.6 6.8 11.7 11.4 13.0 13.5 10.6
20 2.5 22.7 15.4 14.4 L7.7 15.7 14.4
50 1.1 19.5 27.4 23.6 31.2 24.4 27.8
Chi-square 1 10 54.0 1.7 313.6 30.9 38.1 33.6 56.2
20 72.2 0.7 571.7 50.4 62.6 53.8 71.7
50 96.5 1.0 91.4 87.3 94.5 89.0 98.3
Chi-square 4 10 1.2 43.) 32.5 29.7 37.9 34.4 1.7
20 1.7 68.7 56.1 50.8 63.7 55.5 61.6
50 4.5 95.8 90.5 86.7 95.0 90.6 96.3
Half-cauchy 10 533.9 2.8 42,7 36.7 45.1 37.8 46.0
20 75.8 0.8 65.6 57.7 68.1 59.2 68.5
50 95.4 0.0 92.8 88.5 94.2 89.1 91.9
Half-normal 10 1.6 26.2 19.7 19.0 21.2 20.4 17.0
20 0.8 38.6 27.0 24.8 31.7 27.2 27.4
50 1.0 66.5 54.4 48.7 62.1 51.6 58.8
Log-normal(l) 10 16.0 14.4 16.6 16.3 17.4 17.5 14.9
20 22.5 15.6 22.5 23.2 25.6 26.5 24.8
50 36.0 23.8 36.7 48.4 43.3 51.2 50.5
Log-norm(2.4) 10 91.2 0.2 83.2 78.3 86.0 79.8 89.8
20 99.6 0.0 98.4 97.0 99.1 97.0 99.4
50 100.0 0.1 100.0 100.0 100.0 100.0 100.0
Uniform 10 3.4 53.1 42.2 47.9 51.5 48.0 44.7
20 17.6 80.0 69.0 78.5 81.2 74.7 77.5
50 84.9 98.8 97.0 99.7 99.4 98.6 99.8
Weibull (0.5) 10 79.4 0.3 63.8 57.1 68.9 59.1 81.1
20 95.2 0.0 91.0 84.1 92.2 86.2 96.8
50 100.0 0.5 100.0 99.9 100.0 99.9 100.0

Weibull (2.0) 10 2.3 75.7 65.8 64.1 76.2 69.3 69.6
20 9.8 96.4 91.8 91.8 97.0 93.8 96.6
S0 49.8 100.0 100.0 100.0 100.0 100.0 100.0

20
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Power Comparisons using Method 1 (subtracting X, from all others).

The table shows the percentage of 2500 samples declared significant
by the statistic, when the test used was a 10X test.

Alternative
distr.

Beta (1,4)

Chi~square 1

Chi-square 4

Half-cauchy

Half-normal

" Log-normal(l)

Log-norm(2.4)

Uniform

Weibull (0.5)

Weibull (2.0)

Sample
size

10
20
50

10
20
50

10
20
50

10
20
50

10
20
50

10
20
50

10
20
50

10
20
50

10
20
50

10
20
50

O 3L
L I, QoS
w N

O =
O N o

21.8
29.1
42.4

86.9
99.0

100.0

0
- N
SN

92.0

100.0
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TABLE 7
Power Comparisons using Method 2

(using unbiased estimates of A and B)

The table shcws the percentage of 2500 samples declared significant
by the statistic, when the test used was a 10Z test.

Alternative Sample

distr. size D n ) v w? u? A
Beta (1,4) 10 4.3 16.0 11.8 11.6 13.7 11.9 12.9
20 3.1 22.0 15.1 15.6 17.8 4.4 16.4
50 1.0 38.6 26.9 22.8 32.1 24.7 29.1
Chi-square 1 10 39.8 2.4 23.5 22.1 26.8 25.4 31.6
20 64.3 0.9 48.1 42,8 52.4 46.1 59.1
50 93.8 1.0 97.3 8i.5 91.6 85.7 95.0
Chi-square 4 10 2.5 23.6 16.4 1.1 20.0 16.7 18.5
20 1.6 41.6 31.1 29.1 35.5 29.7 33.9
50 1.7 77.9 7.7 63.3 75.7 67.8 16.0
Half-cauchy 10 $3.4 2.4 42.0 36.0 45.9 40.6 48.0
20 76.3 0.6 66.1 58.8 69.1 61.2 70.3
50 95.1 0.0 92.5 88.4 94.3 89.6 94.2
Half-normal 10 1.5 23.9 16.7 16.5 - 19.4 17.0 17
20 1.4 34.2 24.8 23.9 28.6 23.2 26
50 0.7 64.8 51.5 46.7 61.2 50.3 59
Log-normal(l) 10 20.3 6.7 14,4 13.0 16.1 14.5 17.0
20 29.8 5.9 21.3 17.9 23.3 19.4 24.1
50 40.6 5.4 32.1 29.3 37.2 33.1 37.4
Log-norm(2.4) 10 86.6 0.3 76.9 71.9 80.4 77.5 82.9
20 99.0 0.0 97.5 95.8 98.5 96.5 99.0
50 100.0 0.1 100.0 100.0 100.0 100.0 100.0
Uniform 10 2.5 47.2 35.6 42.6 45.0 40.4 44.8
20 16.7 77.6 66.8 77.4 718.4 71.2 19.2
50 80.9 98.9 96.8 99.7 99.6 98.3 99.7
Weibull (0.5) 10 68.0 0.5 53.2 45.8 57.3 53.2 62.1
20 92.5 0.0 86.0 78.6 88.5 82.4 91.0
50 100.0 0.4 100.0 99.5 100.0 99.8 100.0
Weibull (2.0) 10 0.8 41.6 31.4 30.8 38.4 31.8 36.3
20 3.4 75.8 65.5 65.0 74.6 65.2 73.2
50 20.7 99.5 98.3 98.0 99.4 98.8 99.4
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X TABLE 8

df Power Comparisons: regression and EDF statistics
» The table shows the percentage of 2500 samples declared significant
(.. by the statistic, when the test used was a 10% test.
N Alternative Sample 5 2
- distr. size T T W W A
- m h E
Beta (1,4) 10 13.4 8.6 11.4 13.7 12.9
20 13.2 5.6 17.9 17.8 16.4
50 22,2 6.7 43.5 32.1 29.1
- Chi-square 1 10 13.4 18.4 25.0 26.8 31.6
L 20 17.8 23.0 39.0 52.4 59.1
< 50 29.4 36.5 78.6 91.6 95.0
e Chi~square 4 10 13.5 9.8 16.0 20.0 18.5
Ko 20 13.2 7.5 29.2 35.5 33.9
- 50 19.4 9.4 72.7 75.7 76.0
- Half-cauchy 10 36.8 b4.1 48.3 45.9 48.0
- 20 63.0 68.1 71.6 69.1 70.3
e 50 92.0 91.8 96.0 94.3 94.2
¢ Half-normal 10 15.8 10.2 17.0 19.4 17.8
i 20 19.3 9.3 29.6 28.6 26.2
P 50 32.2 12.6 72.4 61.2 59.2
o Log-normal(1l) 10 14.4 19.0 19.1 16.1 17.0
o 20 24.4 29.5 26.5 23.3 24.1
- 50 42.8 49.4 47.4 37.2 37.4
- Log-norm (2.4) 10 54.2 64.4 76.4 80.4 82.9
: 20 81.5 86.6 96.0 98.5 99.0
o 50 98.8 99.1 100.0  100.0  100.0
o Uniform 10 56.0 40.2 48.0 45.0  44.8
20 88.7 71.3 82.6 78.4 79.2
Y 50 100.0 99.5 99.8 99.6 99.7
..'j.
3 Weibull (0.5) 10 30.3  40.6  54.4 57.3  62.1
N 20 49.8 58.4 82.0 88.5 91.0
-3 50 82.5 85.8 99.4  100.0  100.0
Weibull (2.0) 10 27. 18.8 37.8 38. 36.3

PLA |

4 4
20 38.8 22.0 73.3 74.6 73.2
50 71.6 48.0 99.7 99.4
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Several methods are examined for testing for the exponential

distribution, when both the scale and location parameters are un-
known. Percentage points are given for EDFIi:tests, in which both
parameters are estimated from the data, and the tests are compared for

power with EDF tests where only the scale parameter 1is unknown. I
addition,

n
power studies are reported to compare these tests with other

goodnegg-of-fit techniques for the exponential distribution,

» particularly those bagsed on regression methods, and it is found that

have overall good power properties.
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